The potential role of Agrichar in the Commercialization of Dynamotive’s Fast Pyrolysis Process

Terrigal, NSW
April 27-29, 2007

Desmond Radlein,
Andrew Kingston, CEO
Outline

- Dynamotive Corporate Information
- Pyrolysis Technology
- Biooil Properties
- Production Plants
- Agrichar Production Costs
- Carbon Sequestration Costs
- Implications for Energy/Food Crops
Dynamic company in a high-growth, global industry, with strong, management. Publicly traded Nasdaq OTCBB: DYMTF Mkt Cap > $ 200 million. Target to move to senior exchange in 2007. We meet reporting standards and are OS Compliant.

Two pilot plants built, one commercial demonstration plant completed. First full scale commercial plant to be completed this quarter.

Business Development Activity in Americas, Europe, China and Australia. Some of our projects under development.

- North America : 4 Plants Wood, Corn Husks
- South America : 2 Plant Wood Based / corn redidue.
- Europe : 2 Plants Energy Crops, Green Municipal Waste
- China : 1 Plant Agricultural Residue
- Australia : 2 Plants Green Municipal Waste
Strategic Alliances

Biomass Reserves Development

Engineering Consultants

Manufacturer of OGT-2500 modified to run on BioOil

Fabricator of Pyrolysis Plant and Modules

Feedstock Preparation systems
Revenue Opportunities / Profit Making Centers

Territorial Licenses
Technology Licenses
 Plant License
 Support Engineering
 Product Royalties

Plant Construction Services
 Engineering
 Commissioning

Plant Sales

Product licensing
Project development
 Biomass assets
 Project Sales
 Equity Participation

Product Sales
 Bio Oil
 Char
 Intermediate Bio Oil
 Specialty Products

Investment / Acquisitions
Product Application - Market Strategy

STAGE 1: Base Fuels – Heat & Power
- Industrial Focus - Forestry, Sugar, Agricultural & Industrial Biomass Residues

STAGE 2: Transportation Fuels, Blends, Syngas, Synthetic Diesel, Bio-Methanol

STAGE 3: Chemical Refining Derivative Products

Value Added
- Higher
- Lower

Time
- 2004
- 2005
- 2006
- 2007

Dynamotive
Key to Value - Our Fast Pyrolysis Platform – Patented

Rapid (< 2 sec’s) heating of residual cellulosic matter in absence of oxygen.
Over 120 types of biomass sources tested – forest and agricultural clean residues.

Fuels:

Liquid yield 55 – 73% Solid yield 15 – 25%

Non-condensable gases are recycled into the process.

Clean Burning, CO2 Neutral
BioOil and Char Yields

Yields from various tested biomass feedstock:

<table>
<thead>
<tr>
<th>Feedstock</th>
<th>BioOil Yield (wt%)</th>
<th>Char Yield (wt%)</th>
<th>NCG Yield (wt%)</th>
<th>BioOil Energy (GJ/ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100% white wood</td>
<td>70</td>
<td>18</td>
<td>12</td>
<td>17.4</td>
</tr>
<tr>
<td>75/25 white wood/bark</td>
<td>64.5</td>
<td>22</td>
<td>13.5</td>
<td>17.2</td>
</tr>
<tr>
<td>50/50 white wood/bark</td>
<td>63</td>
<td>23</td>
<td>14</td>
<td>16.9</td>
</tr>
<tr>
<td>100% bark</td>
<td>58</td>
<td>27</td>
<td>15</td>
<td>16.5</td>
</tr>
<tr>
<td>Bagasse</td>
<td>68</td>
<td>20</td>
<td>12</td>
<td>16.7</td>
</tr>
<tr>
<td>Corn Stover</td>
<td>70</td>
<td>15.7</td>
<td>14.3</td>
<td>17.5</td>
</tr>
<tr>
<td>Eucalyptus</td>
<td>76</td>
<td>13</td>
<td>11</td>
<td>17.2</td>
</tr>
<tr>
<td>Wheat straw</td>
<td>58</td>
<td>18</td>
<td>24</td>
<td>16.5</td>
</tr>
</tbody>
</table>
Pyrolysis Product Utilization

- **Biomass Waste**
- **Forestry Demolition**
- **Agriculture Wastes**

BioOil
- Inter. BioOil
- Burn Tests
- Industrial Boilers
- Utility Power Boilers
- Specialty Burners
- Burn Tests

Char
- Activated Carbon
- Ferilizers
- Briquettes
- Advanced Uses

Waxes
- Shoe Polish
- Other

Gasification
- Extraction
- Distillation
- Hydrogenation
- Syn-diesel
- Methanol
- Others
- Extraction/Reforming
- To higher value chemicals

Syngas
- Lime Kilns
- Smelter Furnaces
- Industrial Boilers
- Utility Power Boilers
- Specialty Burners
- Burn Tests

Research
Path to Value Pyrolysis Technology Scale-up Stages

1/2 tonne per day up to 200 tonnes per day

Continued Improvement ensures leadership – protects shareholder value
Transportation of BioOil & Intermediate BioOil: 9-12 X Energy Density

<table>
<thead>
<tr>
<th></th>
<th>Volumetric Density</th>
<th>Energy Density</th>
<th>Ratio Compared to BioOil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hog Fuel*</td>
<td>100-140kg/m³</td>
<td>2.4GJ/m³</td>
<td>9</td>
</tr>
<tr>
<td>Sawdust*</td>
<td>100-140kg/m³</td>
<td>2.4GJ/m³</td>
<td>9</td>
</tr>
<tr>
<td>Shavings*</td>
<td>50-100kg/m³</td>
<td>1.7GJ/m³</td>
<td>12</td>
</tr>
<tr>
<td>BioOil</td>
<td>1200kg/m³</td>
<td>20.6GJ/m³</td>
<td>1</td>
</tr>
<tr>
<td>Intermediate BiOil</td>
<td>1260kg/m³</td>
<td>23.9GJ/m³</td>
<td>.86</td>
</tr>
</tbody>
</table>

*Approximate oven dry density, softwood. Source: Washington State University
Intermediate BioOil Yields

Yields from various tested biomass feedstock:

<table>
<thead>
<tr>
<th>Feedstock</th>
<th>Intermediate BioOil Yield (wt%)</th>
<th>NCG Yield (wt%)</th>
<th>Intermediate BioOil Energy (GJ/ton)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100% white wood</td>
<td>88</td>
<td>12</td>
<td>19.6</td>
</tr>
<tr>
<td>75/25 white wood/bark</td>
<td>86.5</td>
<td>13.5</td>
<td>19.9</td>
</tr>
<tr>
<td>50/50 white wood/bark</td>
<td>86</td>
<td>14</td>
<td>19.8</td>
</tr>
<tr>
<td>100% bark</td>
<td>85</td>
<td>15</td>
<td>20.1</td>
</tr>
<tr>
<td>Bagasse</td>
<td>88</td>
<td>12</td>
<td>18.7</td>
</tr>
<tr>
<td>Corn Stover</td>
<td>85.7</td>
<td>14.3</td>
<td>19.0</td>
</tr>
<tr>
<td>Eucalyptus</td>
<td>89</td>
<td>11</td>
<td>18.4</td>
</tr>
<tr>
<td>Wheat straw</td>
<td>76</td>
<td>24</td>
<td>18.7</td>
</tr>
</tbody>
</table>
West Lorne Plant
130 tpd (upgrade) – 100 tpd initial capacity
Grid Connected 2.5 MW modified gas turbine

Capital Cost US$15.0 million

Projected Annual Plant Operating Results:

Sales: BioOil (270,000 GJ)
 + electricity (20,000 Mwh) $ 5.9

Operating Expenses* $ 2.3

EBITDA (as estimated) $ 3.6

Projected Plant ROE (After Tax) 30%
Dynamotive 100% ownership

* Includes $20 per tonne delivered cost for biomass in excess of 70 tpd
Guelph Plant - 200 tpd – Q1 2007 Completion

Modular design allows rapid deployment and start-up.
Biomass: construction demolition wood residue.
Intermediate BioOil output 50,000 tonnes (1 Million GJ / yr.)

Capital Cost Turnkey US $ 16.5

Projected Annual Plant Operating Income:
Intermediate BioOil sales @ $ 8/GJ plant gate $ 8.0
Operating Expenses* $ 4.5

EBITDA (as estimated): $ 3.5

Projected Plant ROE (After Tax) 25%
Dynamotive ROE ** 40%+

* At $ 20 per tonne delivered cost for biomass
** Based on 50% Dynamotive ownership, royalties and other fees of $750,000/yr
Biomass Reserves: 1 tonne = +/- 2.5 Barrels Oil Equivalent

Develop know how and technology to monetize biomass assets
Finance Projects against Enterprise Value of BioMass Assets
Comparison of Dynamotive fuels to other fuels

<table>
<thead>
<tr>
<th>Fuel</th>
<th>Specific Gravity</th>
<th>Energy</th>
<th>Higher Heating Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light Fuel Oil</td>
<td>0.82</td>
<td>46 MJ/kg</td>
<td>19,800 BTU/lb</td>
</tr>
<tr>
<td>Heavy Fuel Oil</td>
<td>0.99</td>
<td>42 MJ/kg</td>
<td>18,050 BTU/lb</td>
</tr>
<tr>
<td>Diesel</td>
<td>0.84</td>
<td>46 MJ/kg</td>
<td>19,800 BTU/lb</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>N/A</td>
<td>38.1 MJ/m³</td>
<td>1,020 BTU/ft³</td>
</tr>
<tr>
<td>BioOil</td>
<td>1.2</td>
<td>16-17.5 MJ/kg</td>
<td>6,500–8,500 BTU/lb</td>
</tr>
<tr>
<td>Intermediate BioOil</td>
<td>1.22-1.3</td>
<td>18-20 MJ/kg</td>
<td>7,740–8600 BTU/lb</td>
</tr>
<tr>
<td>Char</td>
<td>N/A</td>
<td>23 – 32 MJ/kg</td>
<td>10,000–13,800 BTU/lb</td>
</tr>
</tbody>
</table>
Potential Char Applications

- Briquette Manufacturing
- Activated Carbon
- Manufacture of Black Powder
- Steel/Metallurgical
- Char Pellets for Combustion
- Synthesis Gas Production/Gasification
- BioOil/Char Slurry Production
- Agrichar/Fertilizers
Char for Carbon Sequestration

- Carbon can be sequestered as Agrichar for very long term carbon storage in the soil, or as Biochar simply by burying it.

- A repository of charcoal could, for instance, be realized by filling up a natural valley with charcoal, which would finally be covered by a layer of soil to prevent fire by malicious arson.

- Another possibility for a large charcoal storage site could be an artificial mountain of charcoal, which could be cultivated if it has reached its final shape.

Could sequestered char be used as a resource?

One possibility is to use sequestered char as a support for microorganisms that convert Biooil to Biogas. E.g.

![Diagram showing BioOil, Char, Earth Layer, and Biogas]
Biodegradation of Biooil

- We have found that Biooil undergoes fairly rapid biodegradation when inoculated with Activated Sludge (J. Piskorz and D. Radlein, Determination of Biodegradation Rates by Respirometry, Final Report, CANMET Contract 23341-7-2050/001/SQ, Feb. 1998)

- Biodegradability is enhanced by neutralization with bases like lime.

- We have also shown that Biooil readily binds with amino compounds, e.g. Urea, NH₃, proteins to give nitrogenous products that provide a slow release fertilizer (D. Radlein, J. Piskorz and P. Majerski, Method of Producing Slow-Release Nitrogenous Organic Fertilizer from Biomass US Patent 5,676,727, 1997)

Respirometric Plots of Neutralized Bio-Oil and Activated Sludge in Water
Char Production Costs

Total (BioOIl + Char) production cost is:

US4/GJ (BCO + Char) + $0.05 \times (\text{Feedstock cost in } \$\text{/T})

∴ if char is treated as a fuel its production cost is $4/GJ

= $4/(37 \text{ kg char}) \approx $108/T at zero feedstock
Bio-Oil Value / T CO₂ offset

- 0.27 T Carbon is equivalent to 1 T CO₂
- Assuming FC (fixed carbon) content of char is 65%, 1 T CO₂ is equivalent to 0.42 T Char
- With 0.42 T Char, ~1.3 T of BCO is produced and ~2 T Biomass feed is required
- The total HHV of this BCO is ~17*1.3 ≈ 22 GJ
- At $8/GJ, its value is ~$177!!

Thus Bio-Oil worth $177 is produced per Tonne CO₂ offset
Assume C content of wet BCO is 46.5 %. Then the combustion of 1 Tonne BCO gives $= 1.7 \text{ T CO}_2$.

If this replaces fossil fuel it represents 1.7 (T CO_2 sequestered).

Assume 1 T char has 3.25 T BCO co-product.

∴ the effective amount of CO$_2$ offset per tonne of char is $3.25 \times 1.7 + 2.4 = 7.9 \text{ (T CO}_2$)/(T Char)

∴ effective cost of carbon offset by Char = $108/7.9 = $13.7/(\text{Tonne CO}_2$).
The total heating value of the Char + BCO produced is $\approx 17 \times 1.3 + 25 \times 0.42 = 32.5$ GJ

Thus the total production cost for both products is

- $\approx 4 \times 32.5 = \$130/(T \text{ CO}_2 \text{ offset})$ at zero Biomass cost, and
- $5.5 \times 32.5 = \$179/(T \text{ CO}_2 \text{ offset})$ at $30/T \text{ Biomass}$

∴ Net cost of production for CO\(_2\) offset = (Production cost - Value of BioOil) =

- $-47/(T \text{ CO}_2 \text{ offset})$ at zero feedstock cost, and
- $+2/(T \text{ CO}_2 \text{ offset})$ at feedstock cost of $30/T \text{ Biomass}$

Thus net carbon offset by char with BioOil fuel co-product can be cost negative!

(Note that amortization costs of capital are not included here)
Comparison with "Conventional" Sequestration

Techniques available for capture and disposal of CO2 are expensive however. Costs can range from + $30 to + $90 to avoid the release of 1 ton of CO2 to the atmosphere according to Howard Herzog, MIT Energy Laboratory.
EU Emission Allowances (EUA) futures (Dec. ’08) currently trade at ~$80/T Carbon or ~$22/T CO₂.

This price is greater than the estimated effective cost of sequestration by Char of $13.7/(T CO₂).

But less than the cost of carbon offset by Char alone, ($45/T CO₂).
Carbon offset value of char

- Assuming char contains ~65% carbon, then 1 T Char offsets ~ 2.4 T CO2

- If Carbon Offset Price is ~$20/T CO2, the char is worth ~$48-60/T for this purpose

- It could be argued here that char offsets should be worth a premium over biooil offsets as they represent carbon actually removed from the atmosphere
At present Agrichar/Biochar would seem to be priced the same as a fossil fuel offset.

There are verification difficulties that need to be resolved however.

But Agrichar/Biochar represents carbon actually removed from the atmosphere. Use as a bio-fuel only prevents increases in CO$_2$.
The by-product of Bio-Oil, char, can be sold as charcoal briquettes or refined to make activated carbon. In a feasibility study by Huskywood, the selling price is suggested to be $20-$25 per ton (Brady).

If the calorific value of char is ~25GJ/T, it implies that its energy value is only ~ $1/GJ.
If the char could be sold for energy at a price similar to BCO, namely $8/GJ, then it would be worth ~$200/T.

The value of char as an energy product is low because the mineral matter (ash) content only allows combustion in low grade industrial applications, e.g. kilns.

The higher value of $200/T could be approached by de-ashing since it would enable the char to be burned in a gas turbine.

Higher fuel value for the char would make the Agrichar option less favourable.
Bioenergy Perspective

- Since there is no carbon offset premium for carbon sinks, Agrichar as a bioenergy option must be justified in other ways.
- In so far as Agrichar application increases biomass productivity, the rate of CO$_2$ conversion to Biomass also increases.
- Hence a greater rate of BCO/Char production can be sustained. Thus this approach has a positive feedback loop.
- This is particularly important for energy crops.
Possible benefits of Agrichar for Bio-energy Production

- Very little is known about biomass yield increases on char application. Ranges of 0-300 wt% have been reported for crop yields.
- In the context of bioenergy crops, yield increases effectively reduce the cost of biomass feed.
- Very roughly, a 100% yield increase would decrease biomass costs by 50%, other factors being assumed equal.
- Sequestering char in the soil is preferred to its use as fuel only if it decreases the cost of production.
Bioenergy Values

Net Value = $95 - (Biomass Cost/T)

$88
0.65 T BCO
1 T Biomass

$7
0.25 T Char
Recycling Agrichar to Energy Crops

- Assume 10 yr average productivity increase is 100%
- Assume ALL char is recycled
- Then on the same acreage:

1.3 T BCO
$177

0.4 T Char

2 T Biomass

~1 T CO₂ sequestered

Net Value of Energy = $177 - 2X (Biomass Cost/T)
Energy Crop Examples

Reported Yields (Dry Tonne/ha/yr)

<table>
<thead>
<tr>
<th>Crop</th>
<th>Yields</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switchgrass</td>
<td>5-15</td>
</tr>
<tr>
<td>Miscanthus</td>
<td>15-25</td>
</tr>
<tr>
<td>Elephant Grass</td>
<td>30-40</td>
</tr>
</tbody>
</table>
Switchgrass Production Costs
From: “Switchgrass – A Biomass Energy Crop for the Midwest”,
(http://www.ag.ndsu.nodak.edu/streeter/2003report/Switchgrass.htm

“We believe that total production costs of $30/ton for switchgrass biomass will be achievable by Great Plains producers with good establishment techniques on land that is of marginal value for row-crops. … Transportation costs from farm to processing plants are likely to add another $10/ton for the average producer.”

Chart 3. Cumulative cost per ton (excluding land)
Various studies seem to suggest that, generally, under optimal circumstances energy crops like switchgrass can be produced for ~ $30-60/ton (or ~$1.5-2/GJ), excluding land costs.

The most important variables affecting production cost are Biomass Yield, Harvesting Cost and Land Cost.

Agrichar is likely to have a significant impact only on Yield
Advantages of Recycling through Energy Crops

- Essentially char recycling reduces the net delivered cost of biomass
- E.g., if biomass cost is reduced by recycling to say $15/T, through increased productivity, the net value of BCO is $(177-4.75*32.5) = $23
- Compare with +$47 at zero feedstock cost and -$2 at $40/T Biomass
- If a carbon credit of $20/T CO2 is added, the net value becomes $43
- Thus initially free waste feedstock could be used, later switching to energy crops as the scale increased
It may be more profitable to sequester char as a carbon offset rather than to sell it at its (low) fuel value.

But it may be possible and practical to enhance the value of the char, for example by de-mineralization.

Agrichar application for bioenergy production is an interesting option but the potential is unclear.

Tests of char on energy crops like Sugar Cane, Corn, Elephant Grass, etc., need to be carried out to assess its impact on biomass feed costs and yields, if any, of co-products like cornstarch. Specifically:

- Productivity increase for relevant energy crops
- Methods and costs for application of Agrichar
- Optimal levels of Agrichar (This is particularly important as excess char for sale as an energy product enhances the value of the operation)
- Optimal schedule of Agrichar application
Thank You