Ocean Thermal Energy Conversion (OTEC) : Electricity and Desalinated Water Production

Luis A. Vega, Ph.D. Technical Director Offshore Infrastructure Associates, Inc. May 2007

Puerto Rico Ocean Thermal Resource: Truisms

 OTEC plants <u>could supply all</u> the electricity and potable water consumed in Puerto Rico, {but at what cost?}

 Only <u>indigenous renewable energy resource</u> that can provide a high degree of energy security to the State and in addition minimize green house gas emissions;

Generalities

Visionary Perspective: Don Quijote de la Mancha

On annual basis:

- Solar energy absorbed by oceans is ≈ 4000 x human consumption;
- < 1 % Extraction would satisfy all. [OTEC: thermal \rightarrow electric conversion \approx 3 %]

Engineering Perspective: Sancho Panza

 Ocean's vertical temperature distribution ?

<u>heat source</u> and <u>heat sink</u> required to operate <u>heat engine</u>

i.e., two layers with $\Delta T \approx 22$ °C in equatorial waters...

The Concept

OTEC Concept

Ocean Thermal Resource (fuel) ?

Cold Water: @1000 m depth
 4 °C to 5 °C

 Warm Water: Tropical seas at "surface" 24 °C to 30 °C

Open Cycle OTEC

Surface seawater is flash-evaporated in a vacuum chamber. The resulting low-pressure steam is used to drive a turbine-generator. Cold seawater is used to condense the steam after it has passed through the turbine. The open-cycle can, therefore, be configured to also produce fresh water:

Closed Cycle OTEC

Warm surface seawater and cold deep seawater are used to vaporize and condense a working fluid, such as ammonia, which drives a turbine-generator in a closed loop producing electricity:

Thermal Resource

Temperature Difference between Surface Water and 1,000 m Water (want > 20 °C) :

Yellow18 to 20 °COrange20 to 22 °CRed22 to 24 °C

OTEC THERMAL RESOURCE

△T(°C) BETWEEN SURFACE AND 1000 METER DEPTH

Table of Contents

- Technology & Lessons Learned
- Economics & COE (\$/kWh)
- Commercialization
- AC/Energy Carriers/Externalities
- Conclusions
- Annex: Small Plants

What is known about OTEC Technology?

 <u>Continuous</u> production of electricity and desalinated water has been demonstrated with experimental plants:

Nauru (1982)

100 kW CC-OTEC

50 kW CC-OTEC (NH₃) Test Apparatus

210 kW OC-OTEC Experimental Plant

OTEC-Vega

(Vega: 1993-1998)²⁰

Desalinated Water Production (Vega:'94-'98)

OTEC Power Output as Function of Control Parameters

- Open Cycle Control Parameters: Seawater Mass Flow Rates; Seawater Temperatures & Vacuum Compressor Inlet Pressure
- Closed Cycle Control Parameters: Seawater Mass Flow Rates; *Seawater Temperatures*; NH₃ Mass Flow Rate & Recirculation/Feed Flow Ratio

Time (September 8, 1993)

OC-OTEC Power Output vs Cold Water Temperature

1-minute Averages of 1-sec samples show:

Cold Seawater Temperature Oscillation as Signature of Internal Waves

($\lambda \sim 3,500$ m; P ~ 60 minutes; H ~ 50 m)

OC-OTEC Power Output as a Function of Warm Water Temperature

Time (July 21, 1993)

OC-OTEC Power Output vs Warm Water Temperature

1-minute Averages of 1-sec samples show:

Surface Seawater Temperature Variation as Signature of Warmer Water Intrusion driven by Ocean Gyre shed from Alenuihaha Channel between Maui and Hawaii (Big Island)

5 MW Pre-Commercial Plant

OTEC Plant Crew

• 20-people Staff for 24/7 Operations:

<u>Minimal</u>: Technicians: 12 (covers all shifts) Engineering & Admin: 5

? Independent of Plant Size

- Life-Cycle Design
- Constructability
- System Integration

Life-Cycle Design

e.g., locating a component in the water column might yield higher efficiencies but result in elaborate maintenance requirements and higher operational costs

<u>Constructability</u>

Can equipment be manufactured using commercially available practices and in existing factories?

System Integration

In addition to <u>power block</u> (HXs & T-G), OTEC includes <u>seawater subsystems</u>; <u>dynamic positioning</u> subsystems; and, <u>submarine power cable</u>

What is known about OTEC Economics ?

• Economically competitive under certain "scenarios"

(defined by fuel-and-water-costs) :

Cost of Electricity Production

- COE (\$/kWh) = CC + OMR&R + Profit + Fuel (for OTEC zero) - Environmental Credit
 - CC = Capital Cost Amortization (N.B. much higher for OTEC) OMR&R = Operations + Maintenance + Repair + Replacement

Tariff = COE - Subsidy

OTEC-Vega

<u>Please</u> Beware!!

Economy of Scale 10 vs. 100 MW ?

- Power Block Cost of 100 MW plant is ~ 10 x 10 MW
- Seawater Subsystems & At-Sea Deployment of 100 MW is
 - < 10 x 10 MW
- Staffing requirements constant
 100 MW = 10 MW

OTEC Capital Cost: Plant Size Dependency

Nominal Size, MW	TYPE (After Eng. Dev.)	Scenario (by ~ 10 th Plant)	Potential Sites
1	Land-Based OC-OTEC with 2 nd Stage for Additional Water Production.	Diesel: \$45/barrel Water: \$1.6/m³	Present Situation in Some Small Island States.
10	Same as Above.	Fuel Oil: \$30/barrel Water: \$0.9/ m ³	U.S. Pacific Insular Areas and other Island Nations.
50	Land-Based Hybrid CC-OTEC with 2 nd Stage.	\$50/barrel \$0.4/ m ³ or \$30/barrel \$0.8/ m ³	Hawaii, <u>Puerto Rico</u> If fuel or water cost doubles.
50	Land-Based CC-OTEC	\$40/barrel	Same as Above.
100	CC-OTEC Plantship	\$20/barrel	Numerous sites

Fuel and Water Costs Required for Competitiveness (1990)

Cost of Electricity Production

Offshore Distance, km	Capital Cost, \$/kW 10 th Plant	COE, \$/kWh 10%/20-years
10	4,200	0.07
50	5,000	0.08
100	6,000	0.10
200	8,100	0.13
300	10,200	0.17
400	12,300	0.22

2nd Generation 100 MW CC-OTEC (1992 Analysis/Projection)

Updated Assessment ('07)

- For example, Avoided Energy Cost in Hawaii ~ 0.20 \$/kWh [was < 0.06 \$/kWh in 90's]
- Petroleum resources (IEA, API, USGS) available to meet world demand for the next 30-50 years; however, diminishing resources ? price increases
- This situation justifies re-evaluating OTEC for the production of electricity

Global Oil Resources

- Consumption (IEA, API): ~ 80 MBPD (million barrels per day)
 By 2030 ~ 1.5 X;
- Resource (IEA, USGS, API): ~ 1.4 Trillion BBLs (others say 1 to 3)
 e.g., Saudi Arabia "claimed and claims" 265 Billion BBLS (presently produces 11 MBPD)
- 70% of Barrel used transporting people and goods

Global Oil Resources

- Consensus:
 - 30 to 50 years until oil gone- Diminishing resources ? Price
 - Increases
- Presently, H₂ produced with OTEC electricity is equivalent to ~ 8 x price of oil

? Would it be wise to begin to consider H₂ production onboard OTEC plantships deployed along Equator?

OTEC Commercialization?

Pro:

- Less environmental impact than conventional power plants;
- As long as the sun heats the oceans, the fuel for OTEC is unlimited and free.

Con:

 No operational record with <u>large</u> size plant

What Next for OTEC?

Realistic Financing

Based on detailed cost estimates not wishful dreaming

Punta Tunas

- 1,000 m Depth 3,000 m Offshore
- Surface Water Temperature: $27.7 \pm 1.7 \ ^{\circ}\text{C}$
- Deep Ocean (1,000 m) Water:
 5.4 ± 0.3 °C
- Design for ΔT : 22 °C

(27.5/5.5)

(): state points

OTEC Process Flow Diagram

OTEC Capital Cost: 75 to 100 MW

Floating Vessel	25%
Mooring	4%
Submarine Power Cable	7% (10 km)
Seawater Pipes & Pumps	17%
Turbine-Generator	8%
Heat Exchangers	24%
All Controls (electrical/NH3/Cl2)	8%
Install Mech/Electr	7%

75 MW OTEC (10 km offshore)

Electricity Cost (\$/kWh): 75 MW

	1 st	1 st	Later
	Generation	Generation	Generations
Financing:	7.75%/	idem/	idem/
,	10-years	15-years	10-years
CC:	0.144	0.112	0.101
OMR&R: (3% Annual Inflation)	0.023	0.024	0.023
Total:	0.166	0.136	0.123
"Avoided" Cost Equivalent:	70 \$/bbl [accounting for capital cost but no tax credit]	55 \$/bbl	42 \$/bbl

Commercialization (Puerto Rico)

- Puerto Rico could use OTEC to Generate 100% of Electricity Presently Consumed;
- Commercial-size ≈ 75-100 MW floater - C.O.E competitive with ~ \$60 per barrel Oil fired Generators. Later units competitive with ~\$40 barrel

Development Barriers (Puerto Rico)

Cost Issues: Cost Effective for Size ≈ 75 - 100 MW

<u>Tech. I ssues</u>: Would be 1st Generation Commercial Size Plant

Enviro. I ssues: Relatively Minimal

Political Issues: Need broad based

bi-partisan support

Other Applications: AC

Cold deep water as the chiller fluid in air conditioning (AC) systems: load can be met using 1/10 of the energy required for conventional systems and with an investment payback period estimated at 3 to 4 years.

Energy Carriers

OTEC <u>energy</u> could be transported via electrical, chemical, thermal and electrochemical <u>carriers</u>:

Presently, all yield costs higher than those estimated for the submarine power cable (< 400 km offshore).

EXTERNALITIES

- What are external costs of energy production and consumption?
- In USA equivalent to adding \$85 to \$327 to oil barrel
- USA to safeguard overseas oil supplies → add ~ \$23 to barrel (before I raq)

Final Thoughts:

Accounting for externalities will facilitate development and expand applicability of OTEC;

? Presently, can use OTEC plantships to transmit the electricity (and water) to land via submarine power cables (and flexible pipelines).

US Navy Small I sland I nstallations

- Kwajalein Atoll (Marshall Islands)
 <u>Current</u> (May'05-June'06)
 - ~ 10 MW Capacity (diesel gensets) COE (\$/kWh) : [0.16 + 0.05] = 0.21 [fuel + OMR&R]

<u>10 MW OTEC</u> Levelized COE ~ 0.30 \$/kWh

US Navy Small I sland I nstallations

- Situation similar in Diego Garcia (Indian Ocean Island)
- USN willing to issue Power-Purchase-Agreement if COE reduced by at least 10% (~ 0.9 x 0.21 = 0.19 \$/kWh)
- <u>Can not do</u> with ~ 10 MW OTEC