
 
Energy Information Administration, Office of Oil and Gas, October 2006 

1

The Relationship Between Crude Oil and Natural Gas Prices 
 
 

by  
 

Jose A. Villar 
Natural Gas Division 

Energy Information Administration 
 

and 
  

Frederick L. Joutz 
Department of Economics 

The George Washington University 
 
 

Abstract: This paper examines the time series econometric relationship between the Henry Hub 
natural gas price and the West Texas Intermediate (WTI) crude oil price. Typically, this 
relationship has been approached using simple correlations and deterministic trends. When data 
have unit roots as in this case, such analysis is faulty and subject to spurious results. We find a 
cointegrating relationship relating Henry Hub prices to the WTI and trend capturing the relative 
demand and supply effects over the 1989-through-2005 period. The dynamics of the relationship 
suggest a 1-month temporary shock to the WTI of 20 percent has a 5-percent contemporaneous 
impact on natural gas prices, but is dissipated to 2 percent in 2 months. A permanent shock of 20 
percent in the WTI leads to a 16 percent increase in the Henry Hub price 1 year out all else 
equal. 
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Introduction 
 
Economic theory suggests that natural gas and crude oil prices should be related because natural 

gas and crude oil are substitutes in consumption and also complements, as well as rivals, in 

production. In general, the observed pattern of crude oil and natural gas prices tend to support 

this theory (Figure 1). However, there have been periods in which natural gas and crude oil 

prices have appeared to move independently of each other. Furthermore, over the past 5 years, 

periods when natural gas prices have appeared to decouple from crude oil prices have been 

occurring with increasing frequency with natural gas prices rising above its historical 

relationship with crude oil prices in 2001, 2003, and again in 2005. This has led some to examine 

whether natural gas and crude oil prices are related (For example, see Brown (2005), 

Panagioditis and Rutledge (2004), and Jabir (2006)). 

 

Economic factors link oil and natural gas prices through both supply and demand. Market 

behavior suggests that past changes in the oil price drove changes in the natural gas price, but the 

converse did not appear to occur. One reason for the asymmetric relationship is the relative size 

of each market. The crude oil price is determined on the world market, while natural gas 

markets, at least for the period of investigation, tend to be regionally segmented. Consequently, 

the domestic natural gas market is much smaller than the global crude oil market, and events or 

conditions in the U.S. natural gas market seem unlikely to be able to influence the global price of 

oil.  

 

This paper seeks to develop an understanding of the salient characteristics of the economic and 

statistical relationship between oil and natural gas prices. The sample period covers January 1989 

through December 2005 which includes:  

• oil price spikes in 1990 following the invasion of Kuwait  

• the oil price collapse from the supply glut in 1999  

•  dramatic oil price increases since 2003  

• substantial natural gas regulatory reform  

• significant supply shortages in cold winters 

• the natural gas supply bubble for most of the 1990s  

•  big increases in natural gas prices starting in 2001.   
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Figure 1:  Henry Hub and West Texas Intermediate Prices (1989-2005) 
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Source:  Energy Information Administration, Short-Term Energy Outlook, various issues.  
 

The analysis identifies the economic factors suggesting how crude oil and natural gas prices are 

related, and assesses the statistical significance of the relationship between the two over time. 

The focus of the econometric analysis is primarily on the movements in the prices; the economic 

factors are not explicitly modeled. Nevertheless, a significant stable relationship between the two 

price series is identified. Oil prices are found to influence the long-run development of natural 

gas prices, but are not influenced by them.   
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Economic Factors Linking Natural Gas and Crude Oil Prices 

Increases in oil prices may affect the natural gas market in several ways.   

Demand: 

• An increase in crude oil prices motivates consumers to substitute natural gas for 

petroleum products in consumption, which increases natural gas demand and hence 

prices.  Oil and natural gas are competitive substitutes primarily in the electric generation 

and industrial sectors of the economy. According to EIA’s 2002 Manufacturing Energy 

Consumption Survey (MECS), approximately 18 percent of natural gas usage can be 

switched to petroleum products. The National Petroleum Council (NPC) in its 2003 

report estimated that approximately 5 percent of industrial boilers can switch between 

natural gas and petroleum fuels (Costello, Huntington, and Wilson, (2005)). Other 

analysts estimate that up to 20 percent of power generation capacity is dual-fired, 

although in practice it is assumed that the relevant percentage is considerably less. 

However, fuel-switching is not limited to dual-fired units. Some degree of additional fuel 

switching is achieved by dispatching decisions to switch from single-fired boilers of one 

type to that of another fuel. Although these are limited percentages, the shift in marginal 

consumption can have a pronounced impact on prices in a tight market. 
 
Supply: 

• Increases in crude oil prices resulting from an increase in crude oil demand may 

increase natural gas produced as a co-product of oil, which would tend to decrease 

natural gas prices. Natural gas is found in two basic forms—associated gas and non-

associated gas. Associated natural gas is natural gas that occurs in crude oil reservoirs 

either as free gas (associated) or as gas in solution with crude oil (dissolved gas). Non-

associated gas is natural gas that is not in contact with significant quantities of crude oil 

in the reservoir.  In 2004, associated-dissolved gas comprised approximately 2.7 trillion 

cubic feet (Tcf) or 14 percent of marketed natural gas production in the United States. 

• An increase in crude oil prices resulting from an increase in crude oil demand may lead 

to increased costs of natural gas production and development, putting upward pressure 

on natural gas prices. Natural gas and crude oil operators compete for similar economic 

resources such as labor and drilling rigs. An increase in the price of oil would lead to 
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higher levels of drilling or production activities as operators explored for and developed 

oil prospects at a higher rate. The increased activity would bid up the cost of the relevant 

factors, which will increase the cost of finding and developing natural gas prospects.   

• An increase in crude oil prices resulting from an increase in crude oil demand may lead 

to more drilling and development of natural gas projects, which would tend to increase 

production and decrease natural gas prices. Increased oil prices affect the cash flow 

available to finance new drilling and project development. Changes in the relative price 

structure could lead to increases in drilling for one fuel at the expense of the other. 

However, it is generally expected that increased cash flow would expand supply activities 

for both natural gas and oil.  

 

Finally, another factor linking the natural gas and crude oil markets is liquefied natural gas 

(LNG), which permits the transoceanic delivery of natural gas from remote gas-producing 

countries to large gas-consuming areas such as the Lower 48 States.  LNG imports to the Lower 

48 States may affect the relative economics of crude oil and natural gas to the extent that natural 

gas consumption occurs at the margin.  Most LNG contracts are indexed on oil prices, directly 

linking natural gas and crude oil prices (Foss, 2005).  While most of these indexed contracts 

occur primarily in the Pacific Basin, short-term markets for LNG are developing on either side of 

the Atlantic Basin in the United States and Spain, facilitating interregional gas price competition 

between the United States and Europe (Jensen, 2003).   A “world market” for natural gas likely 

would reinforce the linkages between natural gas and crude oil prices. 

These economic factors suggest that oil and natural gas prices should be related. The analysis of 

crude oil and natural gas prices that follows empirically tests this hypothesis by drawing on the 

extensive time series literature on nonstationary processes and cointegration.1  In general, it 

should not be possible to form a weighted average of two nonstationary variables and create a 

stationary time series.  However, in certain cases when two variables share common stochastic or 

deterministic trends, it is possible to create such a cointegrating relationship. Because 

cointegrated variables share an intrinsic structural relationship over time, empirically testing for 

                                                 
1 Stationary time series are defined to have constant mean and variance, while the autocovariance between any 

two values from the series depends only on the time interval between the two values and not on the point in time. 
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the presence of cointegration constitutes an empirical test of the long-run relationship between 

the variables.   

The analysis is presented in five sections and proceeds as follows.   

• The key time series concepts used in the analysis are presented, focusing on the 

properties of nonstationary variables and how they relate to the notion of cointegration. 

• The time series properties of natural gas and crude oil prices are examined.  

• A vector autoregression (VAR) model is estimated to capture the dynamic properties of 

the time series and test for cointegration. The existence of cointegration is used to 

identify a possible long-run relationship and examine its feedback into the two price 

series.  

• The cointegrating relation estimated in the earlier preceding stage of the analysis is used 

to determine an error correction mechanism for modeling natural gas prices in a 

conditional error correction model.  

• The implications and price dynamics of this model are explored. The paper concludes 

with a summary of the findings and directions for further research and potential 

applications to EIA modeling and forecasting issues.    

The analysis in this paper provides statistical evidence supporting the hypothesis that natural gas 

and crude oil prices are nonstationary time series.    Modeling energy data without taking into 

account possible nonstationarity in the data could lead researchers to miss important features and 

properties of the data, which could lead to spurious or misleading results in estimation, 

forecasting, and policy analysis.  Cointegration analysis provides an effective method to resolve 

the issues associated with nonstationary data without the loss of information associated with 

other forms of restoring stationarity to nonstationary data.  Key highlights of the cointegration 

analysis of natural gas and crude oil prices include: 

• A stable statistically significant relationship between the Henry Hub natural gas price and 

the WTI crude oil price and trend capturing the relative demand and supply effects over 

the 1989-through-2005 period was identified.  

• Natural gas and crude oil prices have had a stable long-run relationship despite periods 

when a large exogenous spike in either crude oil or natural gas prices may have produced 
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the appearance that these two prices had decoupled.  

• There is a statistically significant trend term, suggesting that natural gas prices appear to 

be growing at a slightly faster rate than crude oil prices, narrowing the gap between the 

two over time. 

 

Key Time Series Concepts  

Characteristics of Stationary and Nonstationary Time Series 

Econometric analysis of the classical linear regression model depends heavily on the assumption 

that observed data result from stationary data generation processes.  However, in practice many 

economic time series are nonstationary (Nelson and Plosser, 1982). Stationary time series evolve 

independently of time. Specifically, stationarity requires that random shocks or innovations tend 

to dissipate and not have any lasting effects on the evolution of the time series.2  Similarly, the 

variance is assumed to be constant – independent of time. In contrast, nonstationary time series 

have permanent effects resulting from random shocks. For example, consider the following 

autoregressive process: 

1t t ty y uρ −= +      (1) 

where ut is assumed to be a purely random variable that is normally, independently, and 

identically distributed with mean zero and variance σ2.  

Given a value of ρ in equation (1) above, yt can be solved recursively as a function of an initial y, 

time, and the sum of the random disturbances.  

0
1

t
t t i

t i
i

y y uρ ρ −

=

= + ∑     (2) 

 

The expression in equation (2) may be either stationary or nonstationary. If |ρ| is less than 1, 

random shocks to the system dissipate with time, and yt is a stationary process. This occurs 

because ρi approaches zero asymptotically as i increases.  Because the impacts of random shocks 

to the system do not persist, it can be shown that the mean, variance, and autocovariance 

                                                 
2 See Hamilton (1994), or Hendry (1995). 
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asymptotically converge to constants as t becomes larger. Consequently, stationary processes 

evolve independently of time. However, if ρ=1, it can be shown that: 

0
1

t

t i
i

y y u
=

= + ∑      (3) 

When ρ=1, yt is equal to the sum of all past shocks and an initial starting condition, y0, such that 

all past disturbances have a permanent effect on yt. In other words, a random shock that is far-

removed from the current period will have as much an impact on the current period as a random 

shock of equal magnitude in the current period. As a result, it can be shown that the variance and 

autocovariance increase with time, depending on the initial starting conditions. It is the time-

varying nature of the variance and autocovariance that generally cause the failure of the 

assumptions underlying the classical linear regression model:  no autocorrelation, 

homoskedasticity, and multivariate normality. A fundamental challenge in the analysis of energy 

and economic time series is the nonstationarity of many economic variables. For example, one 

well-known issue associated with nonstationary variables is the problem of spurious regressions, 

in which a regression of two unrelated nonstationary variables—each trending upward over 

time—may result in a high R2 suggesting a tight fit of the data when the model in fact explains 

nothing but the similar rising trend over time.  
 

Stochastic processes such as in equation (3) are called unit roots, because ρ=1. A nonstationary 

time series such as in equation (3) is fundamentally evolutionary in nature. Starting from the 

initial point, y0, yt will either increase or decrease depending on the random outcome of ut in a 

given period, accumulating each of the random shocks in each period. Consequently 

nonstationary time series tend to exhibit “wandering” behavior as they follow a stochastic 

trend—a trend with random increments. This contrasts with a deterministic trend that has 

constant increments.   
 

At any given point in time, a particular observation of a nonstationary time series with a unit root 

essentially results from a summation of all the past random errors that preceded it. This process 

is called integration because the present outcome incorporates all of the random errors in the 

past. A simple way of solving the problem of integration in a given time series is simply to 

subtract the value of the preceding period from the current period, which has the effect of 
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canceling out the stochastic trends in the successive periods, and creating a stationary series. This 

transformation is called differencing. From equation (3), a stationary time series can be created 

from a nonstationary series such as yt, by focusing on the change between the periods.   

1t t t ty y y u−Δ = − =      (4) 

 

All integrated variables can be “de-trended” by differencing. However, some nonstationary 

variables must be differenced more than once—taking differences of differences—to create a 

stationary series. The order of integration refers to the number of times that the differencing 

operation must be performed to restore stationarity. For example, in equation (3) yt is integrated 

of order 1, or I(1). 

 

While all I(k) variables can be differenced k times to generate a stationary time series, there are 

some I(1) variables that are cointegrated. This means that it is possible to form a stationary linear 

combination from two I(1) variables. In other words, given two variables xt and yt that are 

nonstationary I(1) variables:   xt and yt  are cointegrated if it is possible to form a linear 

combination such as: 

0 't t ty x uβ β− − =     (5) 

 where ut is a stationary I(0) variable. 

Cointegration is similar to integration in that the process of detrending the nonstationary series 

involves focuses on the offsetting of the shared attributes of stochastic trends. In some economic 

applications it is advantageous to compare two or more time series for shared stochastic patterns 

over time. One advantage of cointegration is that it solves the problem of spurious regressions 

without having to difference the data and losing the information about the levels of the time 

series. Cointegration of economic time series suggests that the economic variables have a long-

run structural relationship that can be empirically evaluated. 
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The Time Series Properties of the Henry Hub Natural Gas Price and the West 
Texas Intermediate (WTI) Crude Oil Price 
A Simple Graphical and Statistical Analysis 

Using 17 years of monthly data drawn from January 1989 through December 2005, time series of 

WTI crude oil and Henry Hub natural gas spot prices were analyzed, focusing on decomposing 

the short-run and long-run effects of changes in crude oil and natural gas prices. The time period 

of the analysis was determined by the availability of a complete series of both Henry Hub and 

WTI prices. Monthly series were used because they have sufficient texture to capture short-run 

movements over time, without adding unnecessary complexity to the analysis. The relationships 

at this frequency can have relevance for the Energy Information Administration’s (EIA) 

forecasting analysis used in the Short-Term Energy Outlook and Annual Energy Outlook. 
 

The analysis of the time series properties of oil and natural gas prices begins by examining the 

levels and differences of natural gas and oil prices statistically and graphically. The two series 

are transformed to natural logarithms and presented in Figure 2. The logarithmic transformations 

were used to remove the scale effects in the variables and reduce the possible effect of 

heteroskedasticity. Logarithmic transformations also have the beneficial property of allowing 

estimated parameters to be directly interpreted as constant elasticities.3 Furthermore, logarithmic 

transformations allow the analysis to proceed on variables in the same units. To facilitate a more 

direct comparison of the two series in the graph, crude oil prices are mean-adjusted down to 

natural gas prices.4  

 

While it is very difficult to tell if a time series is nonstationary by visual examination of level 

data, it appears that natural gas and crude oil prices do have characteristics consistent with 

nonstationary data. Both natural gas and crude oil prices have a trend and meandering quality, 

with prices wandering up and then down. The means of the series do not appear constant over 

time, and in fact may be drifting upward, suggesting the possibility of a stochastic trend. The 

price series also appear to be serially correlated, with prices drifting up for extended periods of 

successive months, followed by periods of successive declines. Furthermore, the volatility of the 
                                                 

3 Throughout the remainder of the paper, the analysis will be conducted on logarithms of natural gas and crude 
oil prices.  For the sake of brevity, the terms price and logarithm of price will be used interchangeably unless 
otherwise noted. 

4 The transformation crude oil price series entails subtracting the mean of the logarithm of the Henry Hub price 
from the logarithm of the WTI crude oil price. 
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series individually and jointly appears to vary over time. However, variation of the price series in 

Figure 2 seems consistent with the possibility that natural gas and crude oil share a common 

trend, fluctuating around a fixed level. These results suggest that natural gas and crude oil prices 

may be cointegrated. 
Figure 2. Logarithm of Henry Hub Natural Gas Price and Mean-Adjusted Logarithm of West 
 Texas Intermediate Crude Oil Prices (1989-2005) 
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 Source: Energy Information Administration, Natural Gas Division. 
 

 

Figure 3 presents the two series in columns of their first differences and 12-month differences 

respectively. Both series appear stationary in their differences, although the departures from the 

mean appear more prolonged in the annual difference case. The analysis will only focus on the 

levels and first differences of the two series.  
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Figure 3. Henry Hub and West Texas Intermediate Prices: 
 First and 12-Month Differences in Natural Logarithms 
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 Source: Energy Information Administration, Natural Gas Division. 
 
The probability distributions and autocorrelation functions (ACFs) for the series are presented in 

Figures 4 and 5. Histograms summarize the frequency of occurrence that a variable falls within a 

certain range of values. As such, histograms provide insights into the mean, standard error, and 

probability distribution of a given variable. Histograms of WTI and Henry Hub prices are 

presented in the top panels of Figure 4, with a plot of a normal distribution superimposed over 

the histogram and a smooth line generated from the histogram. It is readily apparent that Henry 

Hub and WTI prices are not normally distributed. The probability distributions for both price 

series appear bimodal, skewed relative to the normal distribution. The ACFs through 12 lags of 

the WTI and Henry Hub prices are presented in the lower panel of the figure. The ACFs are 

highly significant, close to unity, and decay slowly with considerable persistence. These 

graphical and statistical findings are consistent with unit root processes, which have all 
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autocorrelations close to 1.  

Figure 4. Henry Hub and West Texas Intermediate Prices Histogram and Autocorrelogram   
 Functions 
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 Source: Energy Information Administration, Natural Gas Division. 
 

Figure 5 contains histograms and ACFs for the first differences of both price series. In each case, 

the differencing transformation appears to have resolved the nonstationarities in the two series 

for the most part. In both cases, the probability distributions of the differenced series appear to be 

approximately normally distributed. Further, the autocorrelations are also much smaller, and 

statistically insignificant at most lags. These results support the concept that the levels of the 

price series are unit roots; they are integrated processes of order one, I(1). The problems 

associated with nonstationary data will be a key consideration in the model specification and 

estimation that follows. 
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Figure 5. First Differences of Henry Hub and West Texas Intermediate Prices Histogram and 
 Autocorrelogram Functions 
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 Source: Energy Information Administration, Natural Gas Division. 
 

Testing for Unit Roots 

The analysis proceeds with a more formal test of the integrated process. Two forms of the 

augmented Dickey-Fuller (ADF)5 test were estimated where each form differs in the assumed 

deterministic component(s) in the series: 

0 1

0 1

;

;

P

t i t i t i t
i=1

P

2t i t i t i t
i=1

y y  + y

y y  +  * t y

constant only

constant and trend

α α γ ε

α α γ εα

− −

− −

Δ = + Δ +

Δ = + + Δ +

∑

∑
 (6) 

 

                                                 
5 See Hamilton (1994) 
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The ε t  is assumed to be a Gaussian white noise random error; and t=1,..., 204 (the number of 

observations in the sample) is a time trend term. The number of lagged differences, p, is chosen 

to ensure that the estimated errors are not serially correlated based on the Akaike Information 

Criterion (AIC) statistic.  

 

Table 1 contains the results from the ADF tests. The top half of the table presents the test 

statistics that determine whether the series in levels are stationary I(0), and the bottom half of the 

table presents the findings on whether the first differences of the series are stationary I(1). There 

are seven columns in the table. The first column refers to the number of lags, p, in each 

regression. This is followed by two sets of three columns where the first set presents the results 

for the Henry Hub natural gas price tests and the second has the WTI crude oil price tests. The 

three columns for each set include the t-statistic for the ADF test that is associated with the 1α , 

the t-statistic on the last lagged difference variable in each equation, and the AIC. The null 

hypothesis in each test is that there is a unit root or the series is I(1); this implies that the 

coefficient 1α  is zero. Because of the properties of nonstationary series, the distributions of the 

statistics are different. The critical values are found at the bottom of the table. The t-DY lag and 

AIC measures are used in evaluating the appropriate number of lags in the testing procedure that 

remove serial correlation in the residuals.  

 

The Henry Hub series appears to be an I(1) process. The t-ADF tests for the Henry Hub series 

appear to be significant at the 5-percent level of significance for lags 1 and 11, as the t-ADF 

values, -3.527 and -3.726, respectively, exceed the critical value of -3.43 in absolute value.  This 

could lead to a rejection of the null hypothesis of a unit root; however further testing revealed 

these equation estimates were unstable due to the nonstationarity in the series including large 

outliers.  The WTI series also appears to be an I(1) process, failing to reject the null hypothesis 

of a unit root at each of the 12 lags.   
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Table 1.  Augmented Dickey-Fuller Tests for Unit Roots (Natural Gas Spot Price and West Texas 
 Intermediate Spot Crude Price) 

 lnHenryHub lnWTI 
Number of 

Lags   t-adf    t-DY_lag     AIC   t-adf    t-DY_lag     AIC 

12 -3.373 0.060 -4.003 -2.086 -0.040 -5.088 
11  -3.527*  2.198 -4.013 -2.153 1.620 -5.099 
10 -3.009 3.813 -3.996 -1.851 2.405 -5.095 
9 -2.180 -0.322 -3.928 -1.418 0.055 -5.073 
8 -2.312 -1.333 -3.938 -1.441 0.981 -5.083 
7 -2.711 -1.302 -3.939 -1.276 -0.498 -5.089 
6 -3.157 0.388 -3.940 -1.388 -0.423 -5.098 
5 -3.180 0.938 -3.949 -1.504 0.089 -5.107 
4 -3.041 1.334 -3.955 -1.519 -1.871 -5.118 
3 -2.786 -1.120 -3.956 -1.953 -0.542 -5.109 
2 -3.255 -0.838 -3.960 -2.130 -0.929 -5.118 
1  -3.726* 2.836 -3.967 -2.397 3.834 -5.124 
0 -3.080           -3.935 -1.729           -5.059 

 
 First Difference lnHenryHub First Difference lnWTI 
Number of 

Lags   t-adf    t-DY_lag     AIC   t-adf    t-DY_lag     AIC 

12   -4.093** 1.808 -3.959   -3.608** 1.495 -5.078 
11   -3.698** 0.925 -3.951   -3.332*  0.459 -5.076 
10   -3.584** -1.286 -3.957   -3.331*  -1.282 -5.085 
9   -4.207** -3.266 -3.958   -3.840** -2.214 -5.087 
8   -6.062** 0.708 -3.911   -4.850** 0.089 -5.070 
7   -6.426** 1.844 -3.919   -5.177** -0.876 -5.081 
6   -6.201** 2.000 -3.911   -6.076** 0.590 -5.087 
5   -5.860** 0.435 -3.900   -6.473** 0.574 -5.096 
4   -6.316** -0.140 -3.909   -6.994** 0.060 -5.104 
3   -7.320** -0.632 -3.919   -8.131** 2.108 -5.115 
2   -9.400** 1.905 -3.928   -8.137** 0.889 -5.102 
1   -10.26** 1.862 -3.919   -9.223** 1.338 -5.108 
0   -11.86**           -3.911   -10.61**   -5.109 

 
Source: Energy Information Administration, Natural Gas Division. 
Note:  The sample period for the analysis is July 1989 through December 2005. 
Note:  Levels test has a constant and trend included. The critical values; 5 percent=-3.43 1 percent=-4.01.  First 
differences test has a constant included. The critical values; 5 percent=-2.88 1 percent=-3.47. 
Note:  *, significant at 5 percent; **, significant at 1 percent. 
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VAR Model Specification, Estimation, and Testing for Cointegration 

 

Specification of the VAR Model 
 

A general to specific approach was employed in estimating the model as in Hendry (1986) and 

Hendry and Juselius (2000, 2001). First the lag structure of the VAR is determined. The VAR 

model is general enough to accommodate any number of lag structures, so this must be 

determined prior to conducting the analysis. Next, a simple unrestricted version of the VAR was 

estimated and evaluated for fit and stability. Based on these results, the model was refined and 

re-estimated. Once a correctly specified model emerges from this process, restrictions are 

imposed on the model, hypothesis testing is done, and the model results are interpreted.  
 

The test for a long-run relationship between natural gas prices and crude oil prices starts with the 

estimation of the bivariate VAR system. The VAR can be specified in matrix notation as: 

 

,11

,21

2 3
1 2 3

ln ln
( )

ln ln

( ) ...

tt t

tt t t

p
p

HenryHub HenryHub constant
L B

WTI WTI timetrend

where L L L L L

ε
ε

−

−

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= Π + + ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Π = Π + Π + Π + + Π

 (7) 

 

The price series have been transformed to natural logarithms to address heteroskedasticity issues. 

Constant and trend terms are included in each equation; their role will be modified at a later 

stage in the analysis. The two error terms are assumed to be white noise and can be 

contemporaneously correlated. The expression Π (L) is a lag polynomial operator indicating that 

p lags of each price is used in the VAR.6 The individual Π i terms represent a 2x2 matrix of 

coefficients at the ith lag, and the B matrix is 2x2.   The other variables, lnHenryHub, ln WTI, 

constant, timetrend, and the error terms, are scalar.  
 

The number of lags to use in the model at the beginning is unknown. The selection methodology 

starts with an initial maximum of p lags which are assumed to be more than necessary. Residual 

diagnostic tests like normality, serial correlation, and heteroskedasticity are conducted, and the 

VAR system is tested for stability. The goal is to obtain results that appear close to the 

                                                 
6 See Hamilton (1994). 



 
Energy Information Administration, Office of Oil and Gas, October 2006 

18

assumption of white noise residuals. A large number of lags are likely to produce an over-

parameterized model. However, any econometric analysis needs to start with a statistical model 

of the data generating process. Parsimony is achieved by testing for the fewest number of lags 

that can explain the dynamics in the data system. 

 

Lag Length Selection 

The selection criteria for the appropriate lag length of the unrestricted VAR models employ 2χ  

test(s) and F-tests. Table 2 shows results for the former and Table 3 contains results for the latter. 

The maximum possible lag length considered was 6. The first three columns show the number of 

observations, number of lags, and estimated parameters for each VAR respectively. The log 

likelihood is given in the fourth column. The last three columns contain the Bayesian Schwartz 

Criterion (BSC), the Hannan-Quinn Criterion (HQ), and the Akaike Information Criterion (AIC), 

respectively. 
 
Table 2.  Tests of Lag Length or Model Reduction for VAR 

  T Lags  parameters log-likelihood      BSC      HQ     AIC 

198 6 28 371.029 -3.000 -3.277 -3.465 
198 5 24 368.076 -3.077 -3.314 -3.476 
198 4 20 364.467 -3.147 -3.345 -3.480 
198 3 16 363.027 -3.240 -3.398 -3.505 
198 2 12 361.716 -3.333 -3.452 -3.533 
198 1 8 349.623 -3.318 -3.397 -3.451 
198 0 4 -9.107 0.199 0.159 0.132 

 
Source: Energy Administration, Natural Gas Division. 
Note:  The sample period for the analysis is July 1989 through December 2005. 
Note:  BSC, HQ, and AIC represent the Bayesian Schwartz Criterion, the Hannan-Quinn Criterion, and the 

 Akaike Information Criterion, respectively. 
Note:  The minimum for each test statistics in lag length is in bold and italic. 
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Table 3.  Tests of Lag Length or Model Reduction 

Maximum Lag Length of VAR  

Alternative Lag Length 6 5 4 3 2 1 

5 
 1.375 
[0.242]       

4 
 1.542 
[0.141]  

 1.702 
[0.149]      

3 
 1.258 
[0.242]  

 1.195 
[0.301]  

0.682 
[0.605]     

2 
 1.102 
[0.352]  

 1.007 
[0.442]  

0.654 
[0.732]  

0.628 
[0.6428]    

1 
 2.089 

[0.004]**
 2.259 

[0.004]** 
 2.426 

[0.005]** 
 3.310 

[0.0011]**
 6.015 

[0.0001]**  

0 
 88.757 
[0.000]**

 105.8 
[0.000]** 

 130.85 
[0.000]** 

 174.83 
[0.000]** 

 262.95 
[0.000]** 

 494.20 
[0.000]** 

 
Source: Energy Information Administration, Natural Gas Division. 
Note:  The sample period for the analysis is July 1989 through December 2005. 
Note:  Each column reports the effect on a VAR with the maximum lag from reducing the number of lags 
 from that VAR system. The F statistics are reported with the associated p-values in brackets.  
Note:  * , significant at 5 percent; **, significant at 1 percent. 
 

The BSC, HQ, and AIC statistics are closely related. In each case, the log determinant of the 

estimated residual covariance matrix is computed and added to a term that exacts a penalty for 

the increased number of parameters used in the estimation. The BSC, HQ, and AIC differ in the 

magnitude of the penalty term. Each is used as alternative criterion in testing, because each 

reflects the tradeoff between increasing the precision of the estimates and the possible over-

parameterization associated with the loss of parsimony and degrees of freedom. They rely on 

information similar to the Chi-Squared tests and are derived as follows: 

 

( )
( )
( )

1

1

1

ˆlog 2* *log ( )

ˆlog 2* *log ( log ( ) )*

ˆlog 2* *

BSC Det c T T

HC Det c T T

AIC Det c T

−

−

−

= Σ +

= Σ +

= Σ +

 (8) 

The first terms on the right-hand side of the equations are the log determinants of the estimated 

residual covariance matrix. Intuitively, the log determinant of the estimated residual covariance 

matrix will decline as the number of regressors increases, just as in a single equation ordinary 

least squares regression. It is similar to the residual sum of squares or estimated variance. The 

second term on the right-hand side acts as a penalty for including additional regressors (c) which 
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are scaled by the inverse of the number of observations (T). It increases the statistic. Once these 

statistics are calculated for each lag length, the lag length chosen is the model with the minimum 

value for the statistics respectively. The three tests do not always agree on the same number of 

lags.  The AIC is biased towards selecting more lags than actually may be needed. However, in 

this case the test statistic is minimized at two lags for all three criteria with values of -3.3332, -

3.4518, and -3.5325 for the BSC, HQ, and AIC, respectively. 

 

The F-test is a finite sample criteria used for testing the lag length. It takes a slightly different 

form in the system or multi-equation case.7 

 
( ) ( )

( ) ( )
ˆ ˆ

,
ˆ

R U

U

Det Det
F R n x lags U T x n n x p k

Det

Σ − Σ
= = − −

Σ
 (9) 

 

The test depends on the number of lags times the number of equations, n. Because the number of 

lags is restricted to zero, R is zero.  The unrestricted model, U, is the number of observations, T, 

times n, minus the maximum number of lags (p) times n, minus other variables in the model such 

as deterministic components: constant, trends, and seasonal factors, k. 

 

The test statistic is calculated for maintained models starting with the maximum number of lags, 

which is equal to six here, and then for one less number of lags for each time. This methodology 

is employed to remove an error due to path dependence. For example, lag 3 may appear not to 

have a significant effect on the explanatory power of models with six and five lags, but it would 

have a significant impact on a model with four lags. There are six columns in Table 3 with a 

heading for the maximum number of lags. Below each is the F-test for reducing the number of 

lags to the number in the row. Once again, we have a clear result; a model with two lags explains 

the data generating process as well as models with six, five, four, and three lags. The smallest p-

value for reducing that model with those of more lags is 0.35 with the original model with six 

lags. All models with only a single lag are rejected at 1 percent against those with more lags. 

 

                                                 
7 The symbol “” denotes the probability distribution associated with the given test statistic.   
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The VAR(2) Model Results 

 

In this section, the properties of the VAR(2) are examined further to determine the properties of 

the data generation process (DGP). The estimated model for the period July 1989 through 

December 2005 can be expressed in matrix notation as: 

 

,11 2
1 2

,21 2

ln ln ln
ln ln ln

tt t t

tt t t t

HenryHub HenryHub HenryHub constant
B

WTI WTI WTI timetrend
ε
ε

− −

− −

⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= Π + Π + + ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
  (10)  

 

The iΠ matrices are 2x2, containing the coefficients for each lag in the equations. 

 

Table 4 contains the residual diagnostic tests for the VAR by equation and the vector or system 

tests: The results for the Henry Hub price equation are reported in the top third of the table, the 

results of the WTI crude oil price are reported in the middle third of the table, and the vector or 

system results appear in the bottom third of the table. The associated p-values reported in the last 

column of the table indicate the likelihood of accepting the null hypothesis. For each equation 

and the system as a whole, the assumption of the normality of the DGP fails the Jarque-Berra 

normality tests as indicated by the p-values, which are approximately zero. The rejection of the 

normality of the residuals results from significant outliers owing to price spikes in the two series.  

The Henry Hub price equation further appears to fail the heteroskedasticity tests with p-values of 

less than 5 percent, while the WTI crude oil price equation and system equation do not reflect a 

statistically significant finding of heteroskedasticity. In each case, the estimation results indicate 

that autocorrelation and conditional volatility are not statistically significant features of the 

residuals according to the AR and ARCH tests, respectively.  
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Table 4.  Residual Diagnostic Tests by Equation for the VAR(2) Model 
 

lnHenryHub 
Tests Distribution Statistic P-value 
Portmanteau(12):  21.947  
AR 1-7 test:     F(7,185) = 0.741 [0.6377]   
Normality test:  Chi^2(2) = 22.156 [0.0000]** 
ARCH 1-7 test:   F(7,178) = 0.351 [0.9288]   
hetero test:     F(10,181)= 2.339 [0.0129]*  
hetero-X test:   F(20,171)= 1.874 [0.0170]*  
    

lnWest Texas Intermediate 
Portmanteau(12):  13.857  
AR 1-7 test:     F(7,185) = 0.957 [0.4644]   
Normality test:  Chi^2(2) = 18.814 [0.0001]** 
ARCH 1-7 test:   F(7,178) = 0.980 [0.4473]   
hetero test:     F(10,181)= 0.683 [0.7390]   
hetero-X test:   F(20,171)= 0.824  [0.6824]   
    

Residual Diagnostic Tests for System 
Vector Portmanteau(12):  64.226  
Vector AR 1-7 test:     F(28,354)= 0.832 [0.7135]   
Vector Normality test:  Chi^2(4) = 52.561 [0.0000]** 
Vector hetero test:     F(30,526)= 1.274 [0.1533]   
Vector hetero-X test:   F(60,505)= 1.134 [0.2384]   

 
Source: Energy Information Administration, Natural Gas Division. 
Note:  * , significant at 5 percent; **, significant at 1 percent 
Note:  The sample period for the analysis is July 1989 through December 2005. 

 
 
Figures 6 and 7 illustrate these diagnostic properties. Each figure is 2x2 with results for the 

Henry Hub equation in the left-hand column and the WTI equation in the right-hand column. The 

actual-fitted diagram is presented in the top row and the scaled residuals are given in the bottom 

row of Figure 6. The fits for the two price series are close, but there are several large outliers. 

There appear to be estimated residuals in excess of three standard deviations from the fitted 

model that can be explained by the occurrence of extraordinary market or geopolitical events.  

The first is August 1990, when Iraq invaded Kuwait. Oil prices shot up on news of the invasion, 

as fears that war in the Middle East could adversely affect oil markets. The second was February 

(and March) 1996 when extreme cold and uncertainty contributed to a large increase in the 

Henry Hub natural gas price in February, which was then followed by an offsetting decrease in 

March. The third is September 2001, when terrorist attacks on the World Trade Center and the 
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Pentagon heightened uncertainty throughout the United States and its economy. Figure 7 

contains histograms in the top row and autocorrelation functions in the bottom row for the two 

equations respectively. The failures of the tests for normality appear to be the result of the 

outliers, not skewness or overly fat tails in the distribution of errors. There does not appear to be 

significant autocorrelation. 

 
Figure 6. Henry Hub and West Texas Intermediate Prices with Fitted Values and 
 Residuals from a VAR(2) 
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 Source: Energy Information Administration, Natural Gas Division. 
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Figure 7.  Implied Empirical Density and  Autocorrelogram and of VAR(2)         
Residuals
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 Source: Energy Information Administration, Natural Gas Division. 

 
Model Stability Tests 
 

The natural gas and oil markets are well known for their volatility. International supply and 

demand shocks can affect the crude oil markets and domestic relative demand; supply shocks, 

and weather can affect natural gas markets. Any or all of these events could have contributed to 

instability or “structural” breaks in the data generating process for the Henry Hub and West 

Texas Intermediate markets. 
 

The textbook approach to model constancy assumes that the modeler knows the date of a 

possible structural break in the sample. The model is fitted over the full sample and for the two 

“halves” of the sample. The full sample implicitly imposes the same model structure throughout 

and can be considered a restricted model. This is evaluated against the unrestricted model 
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comprised of the two “halves” using an F-test. We take an agnostic view on the possibility and 

timing of structural breaks over the 1989-2005 samples.  

Model constancy of the VAR system is evaluated using recursive estimation techniques. 

Assuming the original model has T observations, the technique begins by estimating the model 

first over s < T observations in the sample and then fit the model using s + 1, s + 2, ..., up to T 

observations. At this point there are a number of tests for evaluating model (and parameter) 

constancy. They are often best presented in graphical form, because of the large number of 

statistics that are calculated.  

 

A familiar statistical presentation is the 1-step residuals plus the standard error bound used to 

search for outliers. The 1-step residuals are given by β̂ˆ tttt  x - y = e ′  and plotted with the current 

estimate of plus or minus 2σ̂ t  on either side of zero. When etˆ  is outside the band it can be 

interpreted as an outlier. Standardized innovations are another way to illustrate the presence of 

outliers. 

 

Two types of recursive Chow tests are reported. The first is the 1-step Chow test. This looks at 

the sequence of one period ahead prediction from the recursive estimation for period s to T. The 

tests are F(1,t-k-1) under the null hypothesis of parameter constancy. The statistic is calculated 

as: 

 1

1

( ) ( 1)
(1, 1) , 1, ... ,t t

t

RSS RSS t k
F t k where t s s T

RSS
−

−

⎛ ⎞− − −
− − = +⎜ ⎟

⎝ ⎠
 (11) 

 

The test assumes that the dependent variables ,yt  are approximately normally distributed. 

 

The N-down test or Breakpoint Chow test plots the test statistic over the sample, scaled by either 

the 5 percent or 1 percent critical value and, can be interpreted as a forecast stability test. The 

model is estimated for the first s observations. A forecast is constructed using the estimated 

coefficients from period s+1 through T and the F-test is calculated. The null hypothesis is that 

the estimated model and forecast will explain or predict the full sample the same as the full 

sample estimates. The number of periods in the forecasts goes down from T-s+1 to 1 as the 
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model is estimated and forecasts are performed recursively. Recursive estimation permits 

construction of Chow tests over the full sample and lets the data do the talking.   

 

The Breakpoint Chow test is calculated as: 

 1

1

( ) ( 1)
( 1, 1) , 1, ... ,

/ ( 1)
T t

t

RSS RSS t k
F T s t k where t s s T

RSS T s
−

−

⎛ ⎞− − −
− + − − = +⎜ ⎟− −⎝ ⎠

(12) 

 
Figure 8.  Recursive Chow Tests for Model Stability 
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 Source: Energy Information Administration, Natural Gas Division. 

Note: 1-step Chow tests and the Break-Point Chow tests are reported in the left hand and right-
hand columns, respectively. 
Note: Tests on Henry Hub natural gas prices and WTI crude oil prices are reported in the first and 
second rows, respectively.  Joint-Chow tests are reported in the bottom row. 
Note:  Test statistics are scaled on the appropriate critical value at 1-percent levels of 
significance. 
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The results of the 1-step Chow tests and the Break-Point Chow test are presented graphically in 

Figure 8. They are reported in the left-hand column and right-hand column, respectively. At each 

observation, the normalized test statistic was calculated as the ratio of the statistic compared with 

the appropriate critical value at 1 percent. The sequence of tests is plotted. When the normalized 

value exceeds unity, this indicates a rejection of the null hypothesis of no structural break. 

 

The 1-step Chow test results indicate two large spikes in the Henry Hub equation, both of which 

are associated with freezing weather in February 1996 and January 2001, respectively. There is a 

single large spike for the Henry Hub price that occurs in early 2000. This was a period of fairly 

volatile crude oil prices where prices fell by 15 percent in 1 month and recovered by twice that in 

the next 3 months. The joint 1-step Chow test reveals that these three observations are significant 

as well. 

 

The Break-Point Chow tests demonstrate the impact of the freezing weather in 1996 on the 

Henry Hub equation. Thereafter the stability of the equation of the model settles down. However, 

in 2005 the equation appears to become less stable, but not significantly. This issue bears further 

analysis as the model is used in the future. The Henry Hub and system Break-Point tests are 

affected by the February 1996 spike in natural gas prices and the period mid-1998 through 1999. 

A possible explanation for this latter result is the forecast of increasing global demand for oil by 

the Organization of Petroleum Exporting Countries (OPEC) and the increase in quotas leading to 

a supply glut in the market wherein crude oil prices fell by 50 percent. In addition, crude oil 

demand fell because of the Asian financial crisis during this period.  Otherwise both of these 

diagrams suggest the equation and system are stable. 

 

The Cointegration Analysis of the Vector Autoregression Model 

In this section the Johansen procedure is applied to test for the presence of cointegration 

(Johansen, (1988), and Hendry, Juselius, (2000)). The VAR model in levels can be linearly 

transformed into a model that is expressed in first differences. 



 
Energy Information Administration, Office of Oil and Gas, October 2006 

28

( )

,11 1
1

,21 1

1 2 1 2

ln ln ln
ln ln ln

0, , , .

tt t t

tt t t t

HenryHub HenryHub HenryHub constant
B

WTI WTI WTI timetrend

I

ε
ε

ε

− −

− −

Δ Δ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= Γ +Π + + ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥Δ Δ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

Ω Γ = −Π Π = Π + Π −

(13) 

The crux of the Johansen test is to examine the mathematical properties of the Π matrix in 

equation (7), which contains important information about the dynamic stability of the system. 

Intuitively, the Π matrix in equation (13) contains the expression relating the levels of the two 

endogenous variables, the Henry Hub and WTI spot prices. With two endogenous variables in 

the VAR, the Π matrix has one linearly independent row, then crude oil and natural gas prices 

might have a cointegrating relationship. In the specification with two endogenous variables there 

can be as many as two linearly independent equations or no linearly independent equations.8 The 

former implies the two series should be considered as stationary, and the latter implies there is no 

cointegrating relationship and modeling in first differences is appropriate.  

 

Engle and Granger (1987) demonstrate the one-to-one correspondence between cointegration and 

error correction models. Cointegrated variables imply an error correction model (ECM) 

representation for the econometric model and, conversely, models with valid ECMs imply 

cointegration. 

 

Evaluating the number of linearly independent equations in Π is done by testing for the number 

of non-zero characteristic roots, or eigenvalues, of the Π matrix, which equals the number of 

linearly independent rows.9 The matrix can be rewritten as the product of two full column 

vectors, 'α βΠ = .   

 

The matrix 'β  is referred to as the cointegrating vector and α  as the weighting elements for the  

corresponding cointegrating relation in each equation of the VAR. The vector 1' −tYβ  is 

normalized on the variable of interest in the cointegrating relation and interpreted as the 

deviation from the “long-run” cointegrating condition. In this context, the column α  represents 

the speed of adjustment coefficients from the error in each equation. If the coefficient is zero in a 
                                                 

8 If the rank of Π is equal to the number of endogenous variables, then all of the original series are stationary; 
and if the rank of Π is zero, there are no cointegrating vectors.  

9 The number of linearly independent rows in a matrix is called the rank. 
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particular equation, that variable is considered to be weakly exogenous and the VAR can be 

conditioned on that variable. 
 

The α  coefficients are interpreted as the speed of adjustment back towards the long-run 

cointegrating relationship. In addition, their significance is important from a statistical 

standpoint. When the I(1) variables are expressed in a VAR system in first differences or the 

error correction form as in equation (3) above, the issue of  weak exogeneity (Engle, Hendry, and 

Richard, (1983)) and model conditioning can be addressed.  

 

Weak exogeneity implies that the β  terms or long-run error correction relations do not provide 

explanatory power in a particular equation. If this is true, then valid inference can be conducted 

by dropping that equation from the system and estimating a conditional model. 

 

Prior to conducting the test for cointegration, the possibility of deterministic trends in the data, in 

addition to stochastic trends, must be considered, because the asymptotic distribution of the test 

statistic used in the cointegration test is sensitive with respect to assumptions about deterministic 

trends in the data. From Figure 6, the expected values of the differenced prices series appear to 

be roughly equal to 0. This suggests that there is not a deterministic trend in the differenced 

series, and so including a trend variable outside of the cointegration relation in the estimation of 

equation (7) does not appear necessary.  However, there may be a deterministic trend within the 

cointegration relationship, itself. In the lower panel of Figure 2, the Henry Hub series appears to 

be rising slightly faster than the adjusted WTI series, starting out consistently below the WTI 

series, until sometime in 1993, and thereafter exceeding the WTI series on a fairly regular basis. 

To test the possibility of a trend in the cointegrating relation, a trend variable will be restricted to 

the cointegrating equation. The VAR model in differences from equation (13) can be written as: 

,11 11
1

,21 12

ln ln ln
'

ln ln ln
tt t t
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tt t t

HenryHub HenryHub HenryHub
t B X

WTI WTI WTI
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β μ
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− −
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   (14) 

 

Using the model specification in equation (9), the unrestricted VAR was estimated using 

ordinary least squares. The results of the Johansen cointegration test (1988, 1991, and 1994) are 
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presented in Table 5. The eigenvalues of the Π matrix are sorted from largest to smallest. The 

tests are conducted sequentially, first examining the possibility of no cointegrating relation 

against the alternative that there cointegrating relations, and then the null of one cointegrating 

relation against the possibility of two cointegrating relations, e.g., the two price series are 

actually stationary. Essentially, these are tests of whether the eigenvalue(s) is (are) significantly 

different from zero. Both the Johansen trace test and max test support rejection of the null 

hypothesis that there are no cointegrating relations in the system. The first row tests the null 

hypothesis of rank equal to zero. The Trace test and the Max(imum) eigenvalue test are rejected 

at 1 percent whether the asymptotic or degrees of freedom (T-nm) adjustment is used at 1 

percent. However, the Johansen tests are unable to reject the hypothesis that there is more than 

one cointegrating equation in the second row. These results indicate that there is a single 

significant cointegration equation in the system, relating the long-run difference between the 

Henry Hub natural gas and WTI crude oil spot prices.   

The next step involves identifying and interpreting the estimated coefficients of the cointegrating 

relationship. The VAR is re-estimated, restricting it to incorporate only the significant 

cointegrating equation in the system. From the earlier discussion, the hypothesis is that the Henry 

Hub natural gas price is related to the WTI price in an error correction relation. Further this 

relation is important in explaining deviations in the short-run for natural gas prices, but not for 

the WTI price. This involves testing of the andα β vectors. 

 

The standardized eigenvector, or β  vector, is normalized on the Henry Hub price with standard 

errors reported in the second part of Table 5. The normalization of the natural gas price makes its 

associated standard error equal 0. The cointegrating relation may be interpreted as expressing the 

Henry Hub price as a function of the WTI price and a trend term, so that the Henry Hub price is 

equal to 81 percent of the crude oil price plus a trend term of about 0.52 percent.  The signs on 

the coefficients in the table are expressed in the form of the condition that the error correction 

relation, a linear function of the I(1), series is stationary and centered on zero. The tests for the 

statistical significance of the β  coefficients are reported as Chi-square tests with 1 degree of 

freedom. They are individually significant at 1 percent; with test statistics of 12.5 for the LnWTI 

and 11.8 for the Trend. The joint test that both of the estimated β  coefficients are both 

statistically insignificant is rejected with a test statistic of 26.1 and a p-value of less than 1 
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percent.  

 

Table 5. Johansen Cointegration Analysis of Henry Hub Natural Gas Spot Price and West Texas 
Intermediate Spot Crude Price 

Unrestricted Cointegration Rank Tests  

Rank Eigenvalue Trace test   
[ Prob]   

Max test      
[ Prob]   

Trace test     
(T-nm)    

Max test      
(T-nm)    

0 0.1309      34.36 
[0.003]** 

   27.78 
[0.001]** 

33.66 
[0.003]** 

   27.22 
[0.002]** 

1 0.0327       6.58 
[0.401]   

    6.58 
[0.402]   

      6.45 
[0.417]   

    6.45 
[0.417]   

 
 
Standardized Eigenvalues or β s with Standard Errors  
 lnHenryHub lnWTI Trend   
 1 -0.81221 -0.00516   
 0 0.1489 0.00089   
      
Standardized α  coefficients with Standard Errors  
 lnHenryHub lnWTI    
 -0.231 -0.007    
           0.043 0.026    
      
Tests for Significance of the β  Coefficients Joint Test of the β s 
lnWTI Chi^2(1) = 12.494 [0.0004]** Chi^2(1) = 26.188 
Trend Chi^2(1) = 11.819 [0.0006]**  [0.0000]** 
      
Tests for Weak Exogeneity    
lnHenryHub Chi^2(1) = 20.810 [0.0000]**   
lnWTI Chi^2(1) =  0.057005 [0.8113]     

 
Note:  * , significant at 5 percent; **, significant at 1 percent 
Source: Energy Information Administration, Natural Gas Division. 
 

 

Next, hypothesis testing is conducted on the α  vector. First, the cointegrating relation is 

identified by examining itsα , or speed of adjustment, coefficient. It must be negative for the 

relation to be consistent with a stationary process. The standardized α  coefficients and the 

associated tests for weak exogeneity are found below the β  tests. The coefficient for the Henry 

Hub is -0.23, the standard error is 0.043, and the chi-square statistic is 20.8; we cannot reject the 

null hypothesis that α  is significant at 1 percent and negative. Testing for the remaining α  
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coefficient is referred to as checking for weak exogeneity. This determines whether the 

cointegrating relation can explain changes in the particular series. In this case we are testing if 

the changes in the WTI are influenced or explained by the cointegrating relation. The coefficient 

for the WTI is small, -0.007, relative to its standard error, 0.026, and a chi-square statistic of 

0.057 with p-value of 0.81. This suggests that the cointegrating relation does not have significant 

explanatory power on the evolution of the WTI price. However, the cointegrating relation is 

highly significant for the Henry Hub price equation. 

 

These results are consistent with a cointegrating relation, which can be referred to as an error 

correction mechanism (ECM). This is expressed as: 
 

 0.8122 0.0051t t tECM LnHenryHub LnWTI Trend= − × − ×  (15) 
 
The ECM at each observation can be interpreted as depicting departures from a long-run 

equilibrium. The trend term captures a combination of the relative demand and supply factors 

and may reflect factors that affect the interrelationship between these fuel markets. One 

explanation for the time trend term may be the fundamental changes to the natural gas market 

caused by regulatory reform that occurred shortly before and during the period of estimation. 

These issues are beyond the scope of the current analysis; however, they may be addressed in a 

future study.  

 

Figure 9 provides an illustration of the ECM. The zero-line indicates that ECM is equal to zero, 

and the plotted line shows the deviations between the actual Henry Hub natural gas price and that 

predicted by the WTI crude oil price and the trend component. A shock to crude oil or natural 

gas prices is followed by an adjustment in the Henry Hub price until the ECM returns to zero.  

For example, the peak in February 1996 shows the impact of the severe cold weather nationwide 

on natural gas prices as the Henry Hub price climbed to $4.42 per MMBtu compared with the 

preceding month’s price of $2.92 per MMBtu. Similarly, the peak in December 2000 also shows 

the impact of severe freezing weather as Henry Hub prices rose from $5.52 per MMBtu in 

November to $8.90 per MMBtu in December. In each case these departures zero were eventually 

followed by the ECM returning to the zero-line. 
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Figure 9. The Estimated Cointegrating Vector, Error Correction Mechanism, 
 Between Henry Hub and WTI Prices (1989-2005) 
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Source: Energy Information Administration, Natural Gas Division. 
 

 
 
The Conditional Error Correction Model 

The two equation system can be reduced to a single conditional error correction model. WTI 

prices were found to be weakly exogenous. A conditional model means the original model (or 

system) has been partitioned into a subset. Weak exogeneity of the WTI price implies that for 

inference purposes only the change or first differences of the Henry Hub equation needs to be 

estimated. Similar to the VAR approach, the ECM starts from a general form and is reduced to a 

final model. The VAR analysis was used to examine the long-run relation between the two 

prices. When examining the relationship in the short run other factors may have important 

explanatory power so they are included in the model (equation). These additional factors 

influence only the short-run movements in prices not the long-run. The general equation can be 

expressed in six parts as represented below.  
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 (16) 

 
 
The first three expressions contain three lags of the dependent variable, the current and three lags 

of the change in the WTI, and the lagged ECM term. The next expression represents more 

“permanent” impacts on the market caused by shifting from a “gas bubble” environment to 

tighter supplies, as in the late 1990s and the onset of tight supplies in the oil markets pushing up 

natural gas prices. These effects are captured in deterministic variables for outliers and shifts. 

The next expression contains the seasonal factors that have short-run effects on natural gas 

prices. The last components, Xt, include variables which are thought to help explain short-run 

movements in the Henry Hub price. The ( )LΦ expression represents a lag polynomial operator 

for the matrix of these variables. It includes the contemporaneous values of these variables and 

their lags for each month. The variables are working inventories of natural gas and weather 

variables like heating degree days. Monthly working inventories and their levels relative to the 

minimum over the past 5 years are often used in analyses of the short-run movements of natural 

gas prices. Increases in inventories (relative to minimums) reflect slackness in the market. Thus, 

they should have a negative effect on price changes. Heating degree days and their deviations 

from 30-year norms are important factors as well. Cold weather increases the demand for heating 

from natural gas and puts upward pressure on its price. In several months it was noted earlier that 

there might be outliers as a result of heavy storms and market interruptions.  

 

The general error correction equation contained 32 estimated coefficients. Once again, the 

objective is to ensure that the data process for the change in WTI is explained such that the last 

part, the residual disturbance term is a white noise process. We follow a general to specific 

approach of testing reductions on this equation to find a congruent model. 

 

Empirical models are at best approximations of the true data generating process (DGP). The 

econometric model should exhibit certain desirable properties that render it a valid representation 

of the true DGP. Hendry (1995) and Mizon (1995) suggest the following six criteria according to 

the London School of Economics (LSE) methodology. 
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1. There are identifiable structures in the empirical model that are interpretable in light of 

economic theory. 

2. The residuals must be white noise for the model to be a valid simplification of the DGP. 

3. The empirical model must be admissible on accurate observations. For example, nominal 

interest rates and prices cannot be negative. 

4. The conditioning variables are at least weakly exogenous for the parameters of interest in 

the model. Forecasting models require strong exogeneity, while policy models require 

super exogeneity. 

5. The parameters of interest must be constant over time and remain invariant to certain 

classes of interventions. This relates to the purpose of the model in the previous criteria. 

6. The model must be able to explain the results from rival models; it is able to encompass 

them.  
 

The general to specific model reduction process follows diagnostic tests of comparing the model 

fit from restrictions on lags at different lags, blocks of variables, transformations of variables. 

We  used  the  econometric  software,  PcGets,  developed  by  David  Hendry  and Hans-Martin 

Krolzig (2001), and searched all the possible paths in reducing the model to a final model. The 

final specification and estimation of the model may be expressed as: 

1 10.25 0.26 0.14 0.19t t t t t tHH WTI HH ECM Bx ε− −Δ = − + Δ + Δ − + +  (17) 

Where Β and xt  are matrices of estimated parameters and associated exogenous short-

run effects, respectively. 

Estimating the model using the LSE general to specific reduction approach has the benefit of 

increased simplicity in more ways than one. Because crude oil prices are now treated as an 

exogenous variable, the impulse dummy variable for August 1990 may now be dropped from the 

model. Tests of exclusion were conducted on each of the remaining deterministic variables, 

including the impulse dummy variables. Outlier dummy variables for December and February 

1997, and September 2001, as well as the transitory dummy variable for February/March 1996 

and February/March 2003 were necessary to ensure multivariate normality and 

homoskedasticity. Monthly centered seasonal dummy variables were included in the model to 

capture the effects of seasonality on short-run changes in the Henry Hub price of natural gas. The 
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complete model results including the exogenous and deterministic variables are presented in 

Table 6.  

 

Table 6.  Final Error  Correction Model (Change in the log of the Henry Hub price) 
 

Model Variable   Coefficient  Standard Error p-value 
ΔlnHenryHub_1  0.1378 0.0548 0.013 
ΔlnWTI         0.2560 0.0941 0.007 
ECM_1 -0.1852 0.0343 0.000 
WorkingGasInventory       -0.0001 2.00E-05 0.002 
WorkingGasInventory_2     -0.0003 4.37E-05 0.000 
Transitory Dummy (022003)  0.2577 0.0717 0.000 
Transitory Dummy (021996)  0.4226 0.0711 0.000 
Impulse Dummy (1997:02)      -0.1941 0.0708 0.007 
Impulse Dummy (1997:12)      -0.3627 0.0996 0.000 
Impulse Dummy (2001:9)       -0.3246 0.0996 0.001 
Constant       -0.2542 0.0741 0.001 
Centered Seasonal  0    -0.3670 0.0449 0.000 
Centered Seasonal  1    -0.3745 0.0472 0.000 
Centered Seasonal  2    -0.1981 0.0376 0.000 
Centered Seasonal  4    0.1215 0.0451 0.008 
Centered Seasonal  5    0.2352 0.0535 0.000 
Centered Seasonal  6    0.2142 0.0549 0.000 
Centered Seasonal  7    0.2449 0.0548 0.000 
Centered Seasonal  8    0.2823 0.0580 0.000 
Centered Seasonal  9    0.2912 0.0564 0.000 
Centered Seasonal  10    0.1355 0.0427 0.002 

 
sigma               0.0961 RSS                 1.6521 
R^2                 0.5793 F(20,179) =  12.32** 
log-likelihood      195.84 DW                  1.92 
no. of observations 200 parameters   21 
mean(DlnHenryHub)   0.0107 var(DlnHenryHub)  0.0196 

 
AR 1-7 test:    F(7,172) = 0.5408 [0.8026] 
ARCH 1-7 test:  F(7,165) = 0.3573 [0.9256] 
Normality test: Chi^2(2) = 1.1408 [0.5653] 
hetero test:    F(29,149)= 1.1614 [0.2767] 
RESET test:     F(1,178) = 0.1169 [0.7328] 
   
 
Source: Energy Information Administration, Natural Gas Division. 
Note:  **, significant at 1 percent. 
Note: Impulse dummy variable is one in the given month, 0 otherwise; the transitory dummy variable is 
1 in the given month, -1 in the succeeding month, and 0 otherwise. 
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Implications of the Model and Model Dynamics 
 

Equation (17) indicates that a 10 percent increase in contemporaneous crude oil prices will lead 

to an increase of about 2.6 percent in natural gas prices in the first month.  The parameter of the 

lagged natural gas price term has a similar interpretation with a 10 percent increase in the lagged 

natural gas price implying a 1.4 percent increase in the contemporaneous price. The speed of 

adjustment parameter, 0.19, indicates that approximately 19 percent of a difference will be 

recovered in the following period. 

 

A key finding of the model is that adjustments to differences in the ECM may be used to explain 

short-run movements in the natural gas price. This makes the model quite flexible in capturing 

the effects of large stochastic shocks that may cause disequilibria. This also underscores the 

finding that natural gas and crude oil prices have had a stable long-run relationship despite 

periods when a large exogenous spike in either crude oil or natural gas prices may have produced 

the appearance that these two prices had decoupled. 

 

A couple of simple examples will illustrate how natural gas prices respond to changes in the 

crude oil price in the short run, holding all else constant. Two cases are considered: first, a 

permanent increase in the crude oil price, and second, a transitory increase in the crude oil price 

(Table 7).   

 

The first case is presented in the upper panel: Crude oil prices rise by 20 percent and remain 

unchanged thereafter. The immediate response of natural gas prices is to climb by about 5.0 

percent in the same period as the oil price shock occurs. This adjustment occurs primarily 

through the contemporaneous crude oil price term on the right-hand side of equation (17).  In 

each successive period following the initial shock, natural gas prices continue to climb, but at a 

decreasing rate as natural gas prices adjust to the earlier disruption in the long-run error. In the 

succeeding periods the adjustment process is transmitted through the lagged natural gas price 

term and through the lagged ECM term on the right-hand side of equation (17), while the crude 

oil price remains unchanged.  Natural gas prices climb by almost 10 percent within the first 2 

months following the shock, and about 16 percent within 12 months. The oil price shock is not 
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passed through on a one-to-one basis to natural gas prices, and the impact is phased in over time. 

 
Table 7.   Effects of a Permanent and Transitory Change in Crude Oil Price  

Effects of a Permanent Change in Crude Oil Price 

Period Percentage Change WTI Crude Oil Price Percentage Change Henry Hub Spot Price  
0 20.0 5.0
1 0.0 7.8
2 0.0 9.8

12 0.0 16.0

 
Effects of a Transitory Change in Crude Oil Price 

Period Percentage Change WTI Crude Oil Price Percentage Change Henry Hub Spot Price  
0 20.0 5.0
1 -16.7 2.8
2 0.0 2.1

12 0.0 0.6
 
Source: Energy Information Administration, Natural Gas Division. 
 

The second case is presented in the lower panel: A transitory spike in crude oil prices occurs 

such that the crude oil price increases 20 percent in the period 0, followed by an offsetting 

decrease in the period 1. As in the preceding case, natural gas prices respond to the 

contemporaneous increase in crude oil prices by climbing by about 5.0 percent. This adjustment 

occurs primarily through the contemporaneous crude oil price term on the right-hand side of 

equation (17).  In the period following the initial price spike, the natural gas price would have 

continued to climb to restore the long-run relationship. As in the permanent price change case 

presented earlier, the adjustment process is transmitted through the lagged natural gas price term 

and through the lagged ECM term on the right-hand side of equation (17).  However, the crude 

oil price is hit with a second contemporaneous oil price shock—this time a downward movement 

in period 1 of about 17 percent in oil prices, which returns the oil price to its original level. The 

second oil price shock causes a short-term downward impact on the natural gas price of about 4.4 

percent that more than offsets the long-run adjustment to the natural gas price. This leads the 

natural gas price to decline by about 2.2 percent in the period 1 to only 2.8 percent above its 

initial starting level. Two months following the initial oil price shock (period 2), the natural gas 

price is about 2.1 percent above the original price level. In the ensuing months, the natural gas 

price continues to decline. At 12 months past the initial shock, it is about 0.6 percent above its 
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initial level.  

 

For ease of exposition, the foregoing dynamic analysis of the Henry Hub natural gas price 

adjustment to a change in the WTI crude oil price focused on the adjustment process by holding 

the trend term constant.  However, it should be noted that equation (15) implies that if the trend 

term is allowed to climb monotonically, the Henry Hub natural gas price will settle into a “steady 

state” in which the natural gas price increases 0.52 percent each period without any additional 

shocks to the crude oil or natural gas price.  As the trend term continued to increase without 

bound and became very large, the Henry Hub natural gas price eventually would climb above the 

crude oil price.  This does not appear to be a plausible result, and suggests that modeling the 

relative demand and supply factors with a trend term is an oversimplification of reality.  

Nevertheless, in the current context, using the simple trend term suffices to establish the 

statistical relationship between crude oil and natural gas prices, which was the objective of the 

study.  Identifying the market factors underlying the trend term appears to be a fruitful avenue 

for future research, but is beyond the scope of the current analysis.  

 

Summary 
Economic theory suggests that there is a relation between natural gas and oil prices, but the 

influence of an increase in oil prices may conflict in its effects on natural gas supply, and 

therefore, prices. Production of natural gas may increase as a co-product of oil, or may decrease 

as a result of higher-cost productive resources. While the net effect of an increase in oil prices on 

natural gas supply may be ambiguous, the effect on natural gas demand is clear, resulting in a 

positive relation between oil and natural gas prices. Given the relative inelasticity of natural gas 

supply in the short term owing to factors such as a 12-18 month lag in the production response to 

drilling changes, it appears that the effect of oil prices on natural gas demand is dominant in the 

short run. These issues were explored empirically using cointegration analysis and a simple 

vector error correction model.   

 

The analysis supports the presence of a cointegrating relationship between the crude oil and 

natural gas price time series, providing significant statistical evidence that WTI crude oil and 

Henry Hub natural gas prices have a long-run cointegrating relationship.  A key finding of the 

analysis is that natural gas and crude oil prices historically have had a stable relationship, 
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despite periods where they may have appeared to decouple.  A VECM of crude oil and natural 

gas prices was estimated, and facilitated the analysis of the long-run cointegration relation and 

short-run adjustments in prices. The estimation of the model resulted in identifying evidence of a 

stable relationship between natural gas and crude oil prices. The statistical evidence also 

supported the a priori expectation that while oil prices may influence the natural gas price, the 

impact of natural gas prices on the oil price is negligible. With crude oil prices weakly 

exogenous to natural gas prices, the short-run response of the natural gas price to 

contemporaneous changes in the oil price was found to be statistically significant.  

 

Another key finding of the model was the statistically significant trend term, suggesting that 

natural gas prices appear to be growing at a slightly faster rate than crude oil prices, narrowing 

the gap between the two over time.  As noted earlier, while the trend term suffices to establish 

the statistical relationship between crude oil and natural gas prices, it is an oversimplification of 

reality.  Because the VECM relies on the inclusion of a simple trend term in the model, the 

cointegrating approach is currently unsuitable for implementation in EIA’s current long-term and 

short-term modeling such as the Annual Energy Outlook and the Short-Term Energy Outlook.  

More analysis will be necessary before EIA can consider adopting this approach.  In addition to 

developing an explicit representation of the structural elements that are underlie the time trend 

variable in the current model, future studies should explore applying the findings of a stable 

long-run relationship between oil, natural gas, and other fuel prices in both long-run and short-

run forecasting. 

 
The analysis in this paper provided statistical evidence supporting the hypothesis that natural gas 

and crude oil prices are nonstationary time series.  In fact, most economic series are 

nonstationary, which likely includes energy price and consumption data.  This suggests that 

modeling energy data without taking into account possible nonstationarity in the data could lead 

researchers to miss important features and properties of the data and provide spurious or 

misleading results.  This can have important implications for estimation, forecasting, and policy 

analysis.  The theory of cointegration provides an effective tool in modeling nonstationary data, 

restoring stationarity to the data, solving the problem of spurious regressions, and exploiting 

useful relationships among time series.  This does not mean that models exploiting cointegrating 

relations are always superior to models that do not use them, as structural changes to 
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cointegrating relations can lead to forecast failure.  Nevertheless, cointegration analysis can 

provide a useful benchmark for energy forecasters against which to compare their forecasts, 

stimulating thought and improving forecast accuracy. 
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